Information integration is the merging of heterogeneous information from various data sources to a homogenous, clean dataset. This lecture introduces this ever-important topic. It will cover the basic technologies, such as distributed database architectures, techniques for virtual and materialized integration, and data cleansing technologies.
Introduction to Information Integration | 01:25:41 | |
---|---|---|
Introduction | 00:21:42 | |
Organisation | 00:23:31 | |
Information Systems | 00:40:28 |
Verteilung, Autonomie und Heterogenität | 01:20:25 | |
---|---|---|
Überblick | 00:08:34 | |
Verteilung | 00:18:05 | |
Autonomie | 00:17:44 | |
Syntaktische Heterogenität | 00:23:52 | |
Strukturelle Heterogenität | 00:12:10 |
Verteilung, Autonomie und Heterogenität (2) | 01:29:02 | |
---|---|---|
Schematische Heterogenität | 00:19:55 | |
Semantische Heterogenität | 00:24:00 | |
Gebundene und Freie Variablen | 00:45:07 |
Materialisierte vs. virtuelle Integration | 01:26:09 | |
---|---|---|
Überblick: Zwei wesentliche Modelle | 00:36:38 | |
Materialisierte Integration | 00:07:02 | |
Virtuelle Integration | 00:06:19 | |
Vergleich | 00:36:10 |
Web Tables und Architekturen | 01:24:26 | |
---|---|---|
History | 00:07:53 | |
Challenges | 00:03:38 | |
Applications | 00:39:10 | |
Architekturen | 00:21:17 | |
Mediator-Wrapper-Architekturen | 00:12:28 |
SchemaSQL | 01:21:31 | |
---|---|---|
Mediator-Wrapper-Architektur | 00:22:14 | |
Peer-Data-Management | 00:12:30 | |
Wiederholung | 00:21:04 | |
SchemaSQL | 00:25:43 |
SchemaSQL & Schema Mapping | 01:25:21 | |
---|---|---|
SchemaSQL | 00:43:36 | |
Motivation Schema Mapping | 00:41:45 |
Schema Mapping & Schema Matching | 01:25:01 | |
---|---|---|
Schema Mapping | 00:18:24 | |
Klassifikation von Schema Matching Methoden | 00:40:57 | |
Erweiterungen | 00:22:00 | |
Globales Matching | 00:03:40 |
Schema Matching & Mapping Interpretation | 01:26:28 | |
---|---|---|
Globales Matching | 00:20:00 | |
Mapping Interpretation | 01:06:28 |
Global-as-View: GaV | 01:12:02 | |
---|---|---|
Motivation | 00:04:33 | |
Korrespondenzen | 00:05:49 | |
Übersicht Anfrageplanung | 00:24:36 | |
Modellierung | 00:27:31 | |
Anfragebearbeitung | 00:09:33 |
Local-as-View: LaV | 01:10:26 | |
---|---|---|
Modellierung | 00:29:05 | |
Anwendungen | 00:24:26 | |
Anfragebearbeitung | 00:16:55 |
Local as View (LaV) & Global Local as View (GLaV) | 01:10:16 | |
---|---|---|
Closed World Assumption und Open World Assumption | 00:17:51 | |
Containment | 00:43:00 | |
Global Local as View (GLaV) | 00:04:22 | |
Vergleich | 00:05:03 |
Bucket Algorithmus | 01:32:38 | |
---|---|---|
Nutzbarkeit und Nützlichkeit von Views | 00:37:52 | |
Bucket Algorithmus am Beispiel | 00:27:10 | |
Bucket Algorithmus en detail | 00:27:36 |
Duplicate Detection | 01:20:42 | |
---|---|---|
Duplicate Detection | 00:32:41 | |
Similarity Measures | 00:48:01 |
Duplicate Detection Part 3 & Data Quality | 01:25:02 | |
---|---|---|
Partitioning | 00:14:10 | |
Sorted Neighborhood | 00:08:48 | |
Data Sets and Evaluation | 00:35:33 | |
Data Fusion | 00:09:09 | |
Information Quality | 00:17:22 |
Data Quality | 01:25:20 | |
---|---|---|
IQ Criteria | 00:30:32 | |
IQ Assessment | 00:03:54 | |
Cleansing Tasks | 00:33:09 | |
IQ Anecdotes | 00:17:45 |