Big Data Analytics (WS 2015/16)

Prof. Dr. Emmanuel Müller


Diese Vorlesungsserie ist nur für die interne Nutzung durch Studierende des HPI vorgesehen.

In der Vorlesung werden grundlegende Kenntnisse im Bereich der Datenanalyse vermittelt. Techniken zur Analyse großer Datenbestände stoßen bei Anwendern auf großes Interesse. Das Spektrum an Anwendungen ist breit und umfasst sowohl wirtschaftliche als auch wissenschaftliche Datenbestände: Klassische Branchen wie Banken und Versicherungen, neuere Akteure, insbesondere Internet-Firmen oder Betreiber neuartiger Informationsdienste und sozialer Medien, sowie Natur- und Ingenieurswissenschaften. In allen Bereichen besteht der Wunsch aus sehr großen Datenbeständen interessante Zusammenhänge zu extrahieren. In der Vorlesung geht es sowohl um die Aufbereitung von großen Datenbeständen als Voraussetzung für eine schnelle und leistungsfähige Analyse als auch um moderne Data Mining Techniken für die Analyse an sich.

Introduction

Data Exploration

Efficient Data Access

Basics in Statistics and Linear Algebra

Clustering

Classification

Frequent Itemset Mining

Outlier Mining

Summary

Guest Lecture